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Abstract

Motivation: Metastasis is major contributor towards cancer-related mortality and can be difficult to detect

during early stages. The ability to identify cancers that may have already metastasized can help increase

patient survival. In this study, we utilize publicly available expression profile datasets of cancers from

primary sites with or without distal metastasis. We train an elastic net models to predict the origin of

primary cancer tissue and whether the primary cancer has metastasized or not.

Results: Using the elastic-net for hierarchical classification, we were able to predict the origin tissue at

an accuracy of 97% and whether the cancer has already metastasized at an accuracy of 90%. When

examining the top influential genes in the model we find that many mitochondrial genes were negatively

correlated with metastasis.

Availability: All results, tools, available upon request.

Supplementary information: Supplementary data are available upon request.

1 Introduction

Cancer metastasis is the spread of cancer cells from a primary tumor site

to surrounding tissues or distant locations and contributes to around 90%

of cancer moralities ((Seyfried, 2013)). In recent years, cancer incidences

have been steadily increasing due to multiple factors such as longer average

lifespans and better early detection. To address this, advancement in

cancer therapeutics and surgeries has resulted in drastic improvement in

prognosis for most localized cancers. However, patient survival continues

to be significantly impacted after detection of metastasis, which is most

commonly is detected during cancer recurrence and can be years after

tumor resection. The appearance of metastasis after tumor resection

implies that the majority of cancers have metastasized prior to surgery.

This makes detection of cancers with metastatic potential important so

that patients can begin conventional metastasis treatments such as surgery,

chemotherapy, hormone therapy, immunotherapy, or radiation therapy

earlier.

Different cancers also have different metastatic potential. An estimated

6% of breast cancer patients are presented with metastasis, with bones,

brain, liver, and lungs being the most common metastasis location. On the

other hand, approximately 60% of lung cancer patients will have metastasis

commonly to the brain, bone, liver, adrenal glands, thoracic cavity, or distal

lymph nodes ((Riihimäki, 2018)). Differences in metastatic potential and

location of metastasis makes early detection and diagnosis paramount for

effective treatment.

For a cancer to metastasize, it must overcome a series of obstacles

including detachment from the primary tumor location, intravasate into the

circulatory and lymphatic system, evade immune responses and attacks,

extravasate at distal capillary locations, invasion of distal locations, and

proliferation at distal locations ((Hunter, 2008)). In spite of the prevalence

of metastasis in cancer patients, the mechanism of metastasis is extremely

inefficient and risky for detached cells. Current efforts into using these

circulating tumor cells (CTCs) as a biomarkers for metastasis have been

inconclusive due to the difficulty of accurately predicting whether these

tumor cells are capable of establishing metastasis at distal locations.

Therefore, new methods and ways to help predict the metastatic

potential in patients will be an asset for clinicians. Early detection of

metastatic events can drastically improve patient survival by introducing

them to therapeutics earlier and treating distal metastasis while it is still

small.

In this study, we use publicly available expression datasets to

investigate if expression data from primary tissue can be a predictor
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of metastasis events using a hierarchical classification mechanism as

discussed in the next sections of this paper. We then applied the model

to examine if there are shared underlying gene expressions that can help

predict whether a cancer has metastasized or not.

2 Approach

Fig. 1. Hierarchical structure of the classification task.

We implement a hierarchical classification model that follows the

structure as seen in Figure 1.

First, train an elastic-net multinomial regression model to classify from

which tissue source the tumor grew. Specifically, we predict the tissue

source as one of the seven (7) cites, i.e breast, colon, gastric, kidney, liver,

lung, pancreas, and skin. We then fit a hierarchical elastic-net logistic

regression model to predict whether the cancer has metastasized. Due to

the hierarchical nature of our prediction task, we define accuracy as ability

to first correctly predict the tissue source, and then conditionally predicting

metastasis given the predicted tissue sources and the gene expressions.

3 Methods

3.1 Datasets

3.1.1 Data sources

Expression data from various primary tissues with and without metastasis

were downloaded from the GDC. We chose primary tissues of the most

common tissue types on the GDC and compiled a total of approximately

5000 samples. These samples represent data collected from various studies

including The Cancer Genome Atlas Program (TCGA), Clinical Proteomic

Tumor Analysis Consortium (CPTAC), Human Cancer Models Initiative

(HCMI), Count Me In (CMI). Around 400 additional datasets were also

gathered from various independent studies available on GEO ((Kim SK,

2014) (Siegel MB, 2018) (Rothwell DG, 2014) (McDonald OG, 2017a)

(Badal B, 2017) (McDonald OG, 2017b) (Wang, 2021) (Menck K, 2022))

to further increase the number of metastasis samples and introduce

different types of expression data. Overall, our samples are represented by

about 23% Breast, 11% Colon, 8% Gastric, 14% Kidney, 8% Liver, 20%

Lung, 2% Pancreas, and 15% Skin tissues. With respect to metastasis,

approximate 80% of samples were primary tissues without metastasis

while 20% were from primary tissues with metastasis.

3.1.2 Data-Prepossessing

To simplify the model, we filtered out non-protein-coding genes from the

dataset such as lncRNAs and ncRNAs to remove sources of confusions. To

ensure standardization of the 19,938 features, we utilized transcripts per

millions (TPM), then transformed the features by Z scores to obtain unit

variance across features. This ensures that differences between samples

and methods can be normalized to sequencing depth and that no feature

will dominate the predictive power of the model by their raw scale.

As a matter of key relevance, to reduce data leakage, it is noteworthy

that we are standardizing the test feature sets based on the mean and

standard deviation of the training features. The section below discusses

in detail the strategies adopted in splitting the data.

3.1.3 Data-Splitting

To assess the performance of the models under consideration, we adopt

training-testing splitting where the training set comprises 70% of the

dataset, totalling 3,875 samples while the testing set takes up the remaining

30%, totalling 1,665 samples. To foster adequate representation of all

tissue sources, especially as our data is imbalanced, the split was performed

using stratified sampling.

The training set was further split into cross-validation sets. This step is

highly imperative in model selection and parameter tuning. Specifically,

randomly splitting and assigning each the 3,875 training samples into

10 folds, we obtain a training and validation sample of 3,488 and 387

respectively, yet ensuring proportionate representation of each tissue

source across all splits.

3.2 Modeling

3.2.1 Multinomial Model

Given our multi-class prediction task for the tissue source prediction, we

use the multinomial model which extends the binomial when the number

of classes is more than two Hastie T (2021). Suppose the response variable

has K levels G = {1, 2, . . . ,K} and features X ∈ RN×p for a dataset

of sample size N with p predictors. Here we model

Pr(G = k | X = x) =
eβ0k+βT

k
x

∑K
ℓ=1

eβ0ℓ+βT

ℓ
x

(1)

Thus, there is a linear predictor for each class.

3.2.2 The Elastic-Net Model

The elastic net (Zou, 2005) is a regularized method that coalesces the

L1 and L2 penalties of the lasso and ridge regression methods by learning

from their shortcomings to improve the regularization of statistical models.

It does so by linearly combining the variable selection feature of the lasso

and parameter shrinkage property of the ridge model simultaneously. This

effective regularization technique allows for controlling multicollinearity,

perform regression in high dimensional data settings (p >> n), and

reduce excessive noise in our data to allow for isolating the most influential

variables while balancing prediction accuracy Boehmke and Greenwell

(2019). Specifically, for a multi-class prediction task given by 1, we specify

our model is as follows:

Let Y be the N ×K indicator response matrix, with elements yiℓ =

I (gi = ℓ). Then the elastic net penalized negative log-likelihood function

becomes

ℓ
(

{β0k, βk}
K
1

)

= −
1

N

N
∑

i=1

(

K
∑

k=1

yil

(

β0k + xT
i βk

)

)

+
1

N
log

(

K
∑

ℓ=1

eβ0ℓ+xT

i
βℓ

)

+λ



(1− α)‖β‖2F /2 + α

p
∑

j=1

‖βj‖1





(2)

Here β is a p×K matrix of coefficients. βk refers to the k th column (for

outcome category k ), and βj the j th row (vector of K coefficients for

variable j ) Hastie T (2021). The tuning parameters λ ≥ 0 and α ∈ [0, 1]

control the amount of regularization, and the mixing rate of the ridge and
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Fig. 2. Hyperparameter tuning for α. The best tuned α is 0.4, as it yields the smallest

multinomial deviance. This is used in training our elastic net model for predicting tissue

source.

lasso penalties respectively. Thus, setting α = 0 leaves a ridge model

while an α value of 1 resets to a lasso model.

3.3 Tumor cite prediction

Using tumor source as our response and the genes as our features, we

fit the elastic-net multinomial regression model. Our prediction, Ĝ1 =

Pr(G = k|X) for G = {1, 2, . . . , 7} classes, each for the tumor source.

To tune the hyperparameters, we first create a common fold id, which

allows us to apply the same cross-validation folds to each model. We

subsequently create a tuning grid that searches across a range of alphas,

given by α = {0, 0.1, 0.2, . . . , 1}. To obtain the optimal value of λ ≥ 0,

we train our models on the 10-fold cross-validation. The optimal λ is

obtained as the value that minimizes the multinomial deviance from the

model fits. By iterating this procedure for all values of α, we obtain the

best training model as one that attains the lowest deviance. This is used to

make prediction for subsequent analysis.

3.4 Metastasis prediction

Our metastasis prediction follows similar approach as the tumor cite

prediction. However, given that we have two classes of outcomes, that

is a yes or no response, we use the elastic-net logistic regression model.

This is a special case of the multinomial model when K = 2, implying

that there are G = {1, 2} classes. Inheriting the hierarchical structure, our

prediction Ĝ2 = Pr(G = k|Ĝ1, X).

4 Results

4.1 Tumor cite prediction

After training several variations of the elastic-net model (i.e 10 values of

α split evenly in the interval [0, 1]), and using cross-validation to tune

and obtain the best λ, the regularization hyperparameter, we evaluate the

models as the best α that minimizes the multinomial deviance. The results

from this procedure is illustrated in 2.

Figure 2 shows that α = 0 (the fully ridge model) performs worst

as it generates the highest deviance. The smallest deviance is achieved at

α = 0.4. Hence, we select this as the best tuned parameter for predicting

the tumor cite, with it’s corresponding λ value of 0.007619 tuned from the

10-fold cross-validation.

Using the best tuned parameters, our elastic-net model yields a

prediction accuracy of 97.36%. With our multi-class prediction task,

coupled with class imbalance, we further provide the confusion matrix

(Table 1) which illustrates in detail the performance of the elastic-net

multinomial regression model. While the model yields a good prediction

Table 1. Confusion Matrix for tissue cite prediction.

P
re

d
ic

ti
o

n

Ground Truth

Breast Colon Gastric Kidney Liver Lung Pancreas Skin Total

Breast 373 0 0 0 0 1 0 0 374

Colon 1 169 4 1 2 0 2 1 180

Gastric 1 1 120 1 0 1 1 0 125

Kidney 0 0 0 221 0 0 0 0 221

Liver 0 1 0 0 137 1 0 0 139

Lung 2 3 5 2 0 310 5 1 328

Pancreas 0 1 2 0 0 2 48 0 53

Skin 0 0 0 0 1 1 0 243 245

Total 377 175 131 225 140 316 56 245 1665

The elastic-net at = 0.4 yields an impressive accuracy of 97.36%. The confusion

matrix further details what classes are better predicted. Generally, the model easily

misclassifies tissues as lung as seen from the table in terms of prediction error.

accuracy, we observe from table 1 that higher rates of missclassification are

attributable to the Lung. Nonetheless, a prediction accuracy of 97.36%,

is a rather an impressive score, especially given that with 7 classes, a

random assignment would produce about 14% accuracy. This gives us a

huge confidence in the fitting the metastasis model, which is a hierarchical

model whose performance heavily relies on the accuracy of the tumor cite

model.

4.2 Metastasis prediction

Similarly, upon training and tuning for best hyperparameters, the logistic

regression model resulted in the selection of a fully lasso model (α =

1) with an optimal λ value of 0.0058. Using this model, we obtain a

prediction accuracy of 90.33%. Table 2 illustrates the confusion matrix

for this prediction. Our model better predicts when there is no metastasis

than when there is, with the former yielding a precision of about 91.5%

and the latter being 84%.

Table 2. Confusion matrix for metastasis prediction

P
re

d
ic

ti
o

n

Ground Truth

No Yes Total

No 1286 119 1405

Yes 42 218 260

Total 1328 337 1665

4.3 Top Influential genes for metastasis

We analyzed the coefficients of the predictors to obtain the top 25

influential genes determined by absolute values of their coefficients and

their contribution towards metastasis (fig. 3). Of the top 25 genes, there

are 6 genes positively correlated with metastasis events and 19 negatively

associated with metastasis.

Of note, we see an abundance of mitochondrially associated genes in

the oxidative phosphorylation pathway such as ATP5MD, MT-ND1, and

MT-CO1 that are negatively associated with prediction of metastasis. It is

known that cancers often have higher metabolism requirements compared

to normal cells, and out results suggests that cancers with high metastatic

potential may decrease their reliance of oxidative phosphorylation.

Additionally, for positively associated genes, we see an increase of AXL,

a gene part of the Gas6/AXL pathway associated with invasion and

metastasis of cancer.
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These results suggest to us that influential genes that our model used

to predict metastasis status was in line with known literature, and that it

was not influenced by artifacts.

Fig. 3. Top Influential genes for metastasis prediction

4.4 Overall prediction accuracy

Finally, we assess the performance of our hierarchical classification

algorithm. While the ultimate goal is to accurately predict metastasis

given the tissue source, the hierarchical or conditional model can be rather

intricate in it’s overall prediction accuracy. Our final prediction could be

one of these cases:

1. Accurately predict metastasis given an erroneously predicted tissue

source and vice-versa which we code as semi-accurate.

2. Accurately predicting metastasis given accurate prediction of the

tissue source, coded as accurate, and

3. Inaccurately predicting metastasis given an erroneously predicted

tissue source, coded as inaccurate.

Using this metric, we obtain the overall prediction accuracy of our

hierarchical classification algorithm as accurate = 97%, inaccuare =

3% and 0 for semi-accurate, justify how potent our hierarchical

classification algorithm is.

5 Discussion

The expression profiles of cancer can be very distinct between tissue of

origin as well as between individuals, which makes establishing general

trends among different cancers difficult. Our model was able to achieve

an accuracy of 97% in predicting tissue of origin and a 90% for predicting

whether the tumor has metastasis given the tissue of origin.

It is know that recurrent oncogene mutations are often used as a

biomarker in cancer classification. What is unique about our study is

the usage of expression profiles without including gene mutations. The

complexity of annotating and understanding the effects of different gene

mutations makes developing models based on gene mutations difficult for

all but the most recurrent mutations. However, by using expression data

regardless of mutation status, we provide a model that can be more easily

understood and representative of the cell biology of cancer cells.

However, there are many confounders which limits the accuracy of the

model. Although we tried to include as many samples as possible across

different studies, batch effects within studies may result in differences

between samples that were collected as primary and samples that were

collected for metastasis studies. Additionally, patients for whom both

primary and metastasis samples are sequenced may not represent the whole

population of patients with metastasis, as primary tissues of patients with

metastasis are typically late-stage cancers while normal primary tissues

may be gathered from any stage. These effects may result in those primary

samples with metastasis representing severity and development of cancers

rather than metastasis potential.

Overall, the results are promising in showing that there may be

sufficient evidence in expression profiles of primary tumors that can predict

metastasis events. Further studies and incorporation of additional datasets

may help with improving the accuracy of the model.
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