
STATS 606 - Project Report
A Distributed Optimization Package for R

Benjamin Osafo Agyare Eduardo Ochoa Victor Verma

April 22, 2022

Abstract

In distributed optimization, there is a global objective function that is expressed as a sum
of local objective functions, each of which is assigned to an agent. An example of an agent is a
node in a computer network. Each agent attempts to minimize its local objective function using
information on its function and information from the other agents. The aim of our project was
to create an R package that implements two distributed optimization algorithms. We describe
the algorithms and our package, which implements one of the algorithms. We also discuss the
results of experiments in which we used our code to solve distributed versions of statistical
problems.

1 Background

Because of the growth in computers’ storage capacities, massive datasets are now ubiquitous. The
processing and analysis of massive datasets can be accelerated through the use of a computer cluster.
One problem that this approach faces is that usually statistical procedures aim to minimize a loss
function that uses all of the data. Therefore, distributed solution methods are either necessary or
at least highly desirable. For our project, we explored the implementation and use of two popular
algorithms for distributed optimization: distributed gradient descent (DGD) [AN09] and the exact
first-order algorithm (EXTRA) [WS15].

2 Introduction

Given a convex optimization problem, we say that it is a distributed optimization problem if we
can express the global objective function as a sum of local objective functions belonging to different
agents situated in a network [TY19]; the goal is to compute

min
x∈Rn

n∑
i=1

fi(x)

Every agent minimizes its own objective function while exchanging information with other
agents in the network.

Many machine learning and data analytics problems are of a scale that requires distributed
optimization. However, most of the research papers about distributed optimization that we have
seen focus on applications in electrical and digital systems. Given the algorithms’ nature, we believe
that they are well-suited to statistical problems like classification problems, regression analyses, etc.

1



In the class of distributed optimization algorithms, there are discrete-time and continuous-time
algorithms. The former are more developed in the literature and are more feasible to implement.

2.1 Distributed Gradient Descent (DGD)

One of the most popular distributed optimization algorithms is Distributed Gradient Descent
(DGD) [AN09]. This algorithm is intended to be used in situations where each agent has a convex
local cost function. DGD uses diminishing step sizes. At time instant (step) k, agent i runs the
following update:

xi(k + 1) =
N∑
j=1

wij(k)xj(k)− α(k)si(k), (1)

where xi(k) ∈ Rn is agent i’s estimate of the optimal solution at time instant k, wij(k) is the
weight of the edge linking agents i and j, si(k) is the gradient of the local objective function,
and α(k) > 0 is the diminishing step size. The matrix of weights W represents the level of
communication between agents, and it must be doubly stochastic. The decreasing sequence of step
sizes have the following properties:

∞∑
j=1

α(k) = ∞ (2)

∞∑
j=1

(α(k))2 < ∞ (3)

Under the assumption that gradients are bounded, it is possible to show that DGD converges
to one of the optimal solutions [AN09].

2.2 First-Order Algorithm (EXTRA)

Another popular algorithm is the Exact First-Order Algorithm (EXTRA) [WS15]. EXTRA uses
the gradients from the last two iterations, unlike DGD, which just uses the gradient from the
previous iteration. EXTRA can use a large fixed step size. In the first stage, agent i performs the
following update:

xi(1) =
N∑
j=1

wijxj(0)− α∇fi(xi(0)). (4)

In the second stage, agent i performs another update:

xi(k + 2) = xi(k + 1) +
N∑
j=1

wijxj(k + 1)−
N∑
j=1

w̃ijxj(k)− α(∇fi(xi(k + 1))−∇fi(xi(k))) (5)

where xi(k) ∈ Rn is agent i’s estimate of the optimal solution at time instant k, wij(k) and
w̃ij(k) are the weight of the edge linking agents i and j, ∇fi is the gradient of the local objective
function, and α > 0 is the fixed step size. The weight matrices are required to be doubly stochastic.

2



3 Algorithms

Algorithm 1 Distributed Gradient Descent (DGD)

1: Initialize xi(0) for each agent i.
2: At the k-th step, for each agent i update xi(k + 1):

xi(k + 1) =

N∑
j=1

wij(k)xj(k)− α(k)si(k),

3: Repeat step 2 until the convergence criterion is met (tolerance/number of iterations)
4: return The last iteration for each agent xi(k).

Algorithm 2 First-Order Algorithm (EXTRA)

1: Initialize xi(0) for each agent i.
2: For each agent i update xi(1):

xi(1) =
N∑
j=1

wijxj(0)− α∇fi(xi(0))

3: At the k-th step, for each agent i update xi(k + 2):

xi(k + 2) = xi(k + 1) +

N∑
j=1

wijxj(k + 1)−
N∑
j=1

w̃ijxj(k)− α(∇fi(xi(k + 1))−∇fi(xi(k)))

4: Repeat step 3 until the convergence criterion is met (tolerance/number of iterations)
5: return The last iteration for each agent xi(k).

4 Implementation

We set out to create an R package that implements DGD and EXTRA. To ensure that there wasn’t
already an R package that does this, we searched for distributed optimization packages in several
ways. First, we looked at the CRAN task view for optimization and mathematical programming
[TSB22]. The task view described all the packages on CRAN that can be used for optimization.
Searching for strings like ”distrib” and ”DGD” and perusing the descriptions turned up nothing.
We also found nothing when we searched for R repositories on GitHub using queries like ”distributed
optimization” and ”distributed gradient descent”.

We have created a package called DistGD. Currently, it only implements DGD. DistGD is in
a GitHub repository located here. The repository README explains how to install the package.
DistGD uses Apache Spark to carry out the computations. The package code interfaces with Spark
through the sparklyr package [LKU+22]. The sole function that is exposed to the user is called
dgd(). Its inputs are listed in Table 1. This function takes a reference sc to a Spark cluster; on

3

https://github.com/bosafoagyare/DistGD


Argument Class Description

sc spark connection A connection to a Spark cluster
f list list A list of local objective functions

grad list list An optional list of the gradients of the
functions in f list

init xs list A list of initial values
init step size double An initial step size
weight mat matrix The matrix of weights of the connections

between the agents
num iters integer The number of iterations to perform
print logical Whether to print the current minimizer

estimates on each iteration
make trace logical Whether to return a list with the minimizer

estimates from each iteration

Table 1: The arguments of dgd()

each iteration, each compute instance in the cluster carries out the DGD update in Equation 1
for one local objective function. The f list argument of dgd() is set to a list containing these
functions. The user has the option of passing into dgd() a list of the gradients. If these aren’t
provided, then grad() in the numDeriv package is used to approximate them. The user needs to
set the weight mat argument to a matrix whose (i, j)-entry is the weight of the connection between
agents i and j. Two other arguments of note are init step size and num iters; dgd() currently
uses a fixed step size and runs for a fixed number of iterations.

5 Experiments

We used the implementation in two statistics problems: OLS and Logistic Regression. The code
for the experiments can be found here. For these experiments we generated 100,000 observations
and we divided the data into 3 batches, and then we defined the 3 corresponding local functions:

f(β) =
n∑

i=1

L(yi, x
T
i β) =

n1∑
i=1

L(yi, x
T
i β) +

n2∑
i=n1+1

L(yi, x
T
i β) +

n∑
i=n2+1

L(yi, x
T
i β)

f(β) = f1(β) + f2(β) + f3(β)

The results for linear regression are shown in Fig. 1; the resuls for logistic regression are shown
in Fig. 2. In each problem, for each local objective function, the sequence of iterates appears to
converge to the global minimizer.

6 Conclusion

In this report, we have described two frequently used algorithms for distributed optimization. We
have introduced an R package we created that implements one of the algorithms and have shown
how the package performs in two experiments.

4

https://github.com/bosafoagyare/DistGD/tree/master/implementation


1 2 3

−5.0 −2.5 0.0 −5.0 −2.5 0.0 −5.0 −2.5 0.0

0.0

2.5

5.0

curr_x_1

c
u
rr

_
x
_
2

0.0

2.5

5.0

7.5

10.0
iter_num

Figure 1: Ordinary Least Squares: These plots show the convergence behavior of the 3 local functions with
respect to the global minimum.

1 2 3

−5.0 −2.5 0.0 −5.0 −2.5 0.0 −5.0 −2.5 0.0

0.0

2.5

5.0

curr_x_1

c
u
rr

_
x
_
2

0.0

2.5

5.0

7.5

10.0
iter_num

Figure 2: Logistic Regression: These plots show the convergence behavior of the 3 local functions with
respect to the global minimum.

5



Several improvements could be made to the package. First, instead of executing DGD for a fixed
number of iterations, dgd() should terminate the algorithm once some convergence criterion has
been satisfied, like the norm of the gradient dropping below some threshold. Second, a decreasing
sequence of step sizes that satisfies conditions (2) and (3) should be used instead of a fixed step
size. Third, we have only tested the code in Spark’s local mode, where there is just one compute
instance. It would be useful to test the code on Great Lakes and on a cluster computing service
like Databricks. We ran out of time before we could add a function for running EXTRA; doing
this would be another way to enhance the package.

7 Contributions

Benjamin Osafo Agyare helped create the package harmonizing the scripts from Victor and
experimentation from Eduardo.

Eduardo Ochoa Rivera helped with the literature review to choose the project’s topic, helped
in the design of the implementation, and helped with the numerical experiments.

Victor Verma helped write the code for the package and helped write the report.

6



References

[AN09] Asuman Ozdaglar Angelia Nedic. Distributed subgradient methods for multi-agent op-
timization. IEEE Transactions On Automatic Control, 54, 2009.

[LKU+22] Javier Luraschi, Kevin Kuo, Kevin Ushey, JJ Allaire, Hossein Falaki, Lu Wang, Andy
Zhang, Yitao Li, Edgar Ruiz, and The Apache Software Foundation. sparklyr: R Inter-
face to Apache Spark, 2022. R package version 1.7.5.

[TSB22] Stefan Theussl, Florian Schwendinger, and Hans W. Borchers. CRAN task view: Opti-
mization and mathematical programming, 2022. Version 2022-03-07.

[TY19] Xinlei Yi Tao Yang. A survey of distributed optimization. Annual Reviews in Control,
47:278–305, 2019.

[WS15] Qing Ling Wei Shi. Extra: An exact first-order algorithm for decentralized consensus
optimization. SIAM Journal on Optimization, 25:44–966, 2015.

7


	Background
	Introduction
	Distributed Gradient Descent (DGD)
	First-Order Algorithm (EXTRA)

	Algorithms
	Implementation
	Experiments
	Conclusion
	Contributions

