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Abstract

Linear regression sometimes present us with the problem of high dimensionality –especially
when the covariates, p is far greater than the sample size, n. A frequentist approach to tackling
such problems include adopting shrinkage methods via penalization. However, penalization
methods present yet another challenge of quantifying parameter uncertainties. Bayesian ap-
proach gives us the power to quantity parameters via estimating the posterior distribution
for such parameters using Markov Chain Monte Carlo (MCMC) techniques. With such high
dimensional shrinkage methods, we need super fast MCMC algorithms that are efficient and
computationally relative inexpensive. In this simulation study, we compare and show that the
two-Block Gibbs samplers (2BG) is a more efficient state of the art MCMC algorithm relative
to the three-Block Gibbs samplers (3BG) method in estimating the posterior distributions of
two commonly used Bayesian shrinkage models, viz: the Bayesian Lasso (BL) and the Spike-
and-Slab shrinkage priors. Our criteria for evaluation include the one-lag autocorrelation and
the average effective sample size per second, Neff/T . Consequently, we apply these methods
on the protein expression genetics data from the National cancer Institute.

Keywords: Gibbs sampler; Bayesian Lasso; Spike-and-Slab; Geometric ergodicity, parallel
computing

1. Introduction

In linear regression, we model a response variable, y using potential predictors, x1, x2, x3, . . . , xp

via the regression coefficients, β = (β1, β2, β3, ..., βp). Penalization is a technique used to handle
situations where p >> n, which, depending on the choice of the choice of the penalty function, some
βj ’s would be shrunk to zero. Sparse estimates of βj ’s which typically yield stable predictions for
such situations present us with yet the problem of parameter uncertainty quantification. A solve
to this challenge is to model such problems using Bayesian techniques.

Particularly, recent works in Bayesian shrinkage modeling use shrinkage priors to address this
using two popular methods viz: the spike-and-slab priors such as Laplace-Zero mixtures (John-
stone and Silverman, 2004) which assign mixtures of the degenerate distribution at zero and the
purely continuous prior distributions such as the Horseshoe distribution (Carvalho et al., 2010) as
alternatives to quantify parameter uncertainties. Moreover, Park and Casella (2008) developed a
Bayesian lasso approach to the frequentist lasso objective following Tibshirani (1996)’s work which
identified that the lasso objective could be interpreted as the posterior under a certain Bayesian
model with an independent Laplace prior on the coefficients.

However, as with most Bayesian problems, there are no closed form expression for posterior
quantification of the Bayesian Shrinkage models. An approach to approximating the posterior
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distribution is via Variational Bayes algorithms such as mean field variational Bayes (MFVB)
methodology. While this is a fast algorithm, Neville et al. (2014) points that the MFVB algorithm
can perform quite poorly due to posterior dependence among auxiliary variables. Markov chain
Monte Carlo (MCMC), an indispensable tool in contemporary Bayesian inference provides us with
alternative methods that can be used to approximate the posterior distribution and hence make
inferences on the parameters since the shrinkage priors of these models capitalize on hierarchical
representations. Utilizing the power of MCMC, Park and Casella (2008) provided the three-step
Gibbs sampler, otherwise known as the three-Block Gibbs sampler (3BG) algorithm to explore the
posterior distribution for arbitrary n and p. While Khare and Hobert (2013) proved that the 3BG
is geometrically ergodic for arbitrary values of n and p, it tends to suffer from slow convergence
especially if p/n is large enough due to high correlation between components of the different blocks,
especially that between the regression coefficients in one block and the variance parameters in
another(Rajaratnam and Sparks, 2015). Owing to the deterioration in the convergence properties
of the 3BG in high-dimesional settings, Rajaratnam et al. (2019) proposed an efficient version
known as the two-Block Gibbs sampler (2BG) algorithm to overcome the sluggish convergence
issues of the former. Theoretical convergence properties can be found in the aforementioned paper
if it interests the reader.

In this project, we perform a simulation study comparing the computational efficiencies between
the 3BG and 2BG using the spike-and-slab priors and Bayesian lasso model following Rajaratnam
et al. (2019). Computing efficiency in this case is measured as the effective sample size per second
(Neff/T ). We also assess the mixing rates in terms of lag-one autocorrelations ρ1, hence having ρ1
closer to 0 implies better mixing rate (Rajaratnam and Sparks, 2015). We consequently apply this
method on the well-known NCI-60 cancer cell panel from the National cancer Institute.

The rest of the article is organized as follows: Section 2 provides an overview of the Bayesian
skrinkage frameowork for regression as well as a review of the spike-and-slab priors and the Bayesian
lasso and the 2BG algorithms that explore the posterior distributions. In Sections 3 and 4, we
perform simulation studies and real data analysis to empirically compare the two algorithms under
study. We close the project with concluding remarks in Section 5. The codes for this project are
found at https://github.com/bosafoagyare/2-BGS.

2. Methods

2.1. Bayesian Shrinkage Models

Let Y ∈ Rn be the response vector, X be the n × p design matrix of standardized covariates,
β ∈ Rp be the vector of regression coefficients, σ2 > 0 be the residual variance and µ ∈ R be an
unknown intercept in a regression problem. This model is represented as:

Y | β, σ2 ∼ Nn

(
µ1n +Xβ, σ2In

)
(1)

We more especially focus on situations where the number of covariates p is much larger than the
sample size n. In the Bayesian framework where sparsity is desired, the spike-and-slab priors
which mixes a normal density with a spike at zero and another normal density which is flat near
zero as well as the alternative purely continuous skrinkage priors have been explored in shrinking
the regression coefficients toward zero. Customarily, many Bayesian methods in high-dimesional
regression follow a set-up where the prior density is specified as:

β | σ2, τ ∼ Np

(
0p, σ

2Dτ

)
, τ ∼ π(τ ), (2)

where π(τ ) is a prior on τ = (τ1, . . . , τp). Now, further assume that the prior on σ2 and µ is once
again the improper prior π

(
σ2, µ

)
= 1/σ2 and that this prior is independent of the prior on τ . It
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follows that integrating out µ after combining 1 and 2 yields the following conditional distributions:

τ | β, σ2,Y ∼ π
(
τ | β, σ2,Y

)
,

σ2 | β, τ ,Y ∼ Inverse-Gamma[
(n+ p− 1)/2, ∥Ỹ −Xβ∥22/2 + βTD−1

τ β/2
]
,

β | σ2, τ ,Y ∼ Np

(
A−1

τ XTỸ , σ2A−1
τ

)
,

(3)

where Aτ = XTX + D−1
τ and Dτ = Diag (τ1, τ2, . . . , τp). So long as it is possible to draw

from π
(
τ | β, σ2,Y

)
, one can use the three conditionals above to construct a useful 3BG to draw

from the joint posterior π
(
β, σ2 | Y

)
. The one-step transition density k̂ with respect to Lebesgue

measure on Rp × R+is given by

k̂
[(
β0, σ

2
0

)
,
(
β1, σ

2
1

)]
=

∫
Rp

+

π
(
σ2
1 | β1, τ ,Y

)
π
(
β1 | τ , σ2

0 ,Y
)

× π
(
τ | β0, σ

2
0 ,Y

)
dτ .

(4)

2.1.1. The Spike-and-Slab Prior

Under the spike-and-slab prior framework, we assign independent discrete priors to τj such that
each assign probability wj to the point κjζj and probability 1− wj to the point ζj , where ζj > 0
is small, κj > 0 is large, and wj ∈ (0, 1). This yields the conditional posterior distribution of
τ | (β, σ2,Y ) which is a product of independent discrete distributions that each assign probability
w̃j to the point κjζj and probability 1− w̃j to the point ζj (Rajaratnam et al., 2019), where

w̃j =

{
1 +

(1− wj)
√
κj

wj
exp

[
−

β2
j

2σ2

(
κj − 1

κjζj

)]}−1

(5)

In our study, we treat w̃j , κj , ζj as constants whose values are chosen to meet the constraints
in the analyses that follow.

2.1.2. The Bayesian Lasso

Here, we assign independent Exponential
(
λ2/2

)
priors to τj where

(
λ2/2

)
is the rate param-

eter of the exponential distribution. It follows that the marginal prior of β (given σ2 ) assigns
independent Laplace densities to each component. Hence, the conditional posterior distribution
of τ | (β, σ2,Y ) assigns independent inverse Gaussian distributions to each 1/τj , which makes it
straightforward to sample from. The full framework is given by Park and Casella (2008) under the
3BG algorithm.

2.2. Fast MCMC for Bayesian Skrinkage Models

Rajaratnam et al. (2019) provide and prove the following lemma which provides a 2BG alter-
native algorithm to overcome the sluggish convergence properties of the 3BG algorithm.

Lemma 1. For the Bayesian model in 2, σ2 | τ ,Y has the inverse gamma distribution with shape
parameter (n− 1)/2 and scale parameter Ỹ

T
(
In −XA−1

τ XT
)
Ỹ /2.

The lemma above leads to the construction of a novel 2BG sampler for generating samples from
the joint posterior density of

(
β, σ2

)
, and which is equally tractable as the original 3BG sampler.

This algorithm alternates between drawing
(
β, σ2

)
| τ and τ |

(
β, σ2

)
where,

(
β, σ2

)
| τ may be

drawn by first drawing σ2 | τ and then drawing β | σ2, τ . In other words, the 2BG sampler may
be constructed by replacing the draw of σ2 | β, τ ,Y in 3 with a draw of σ2 | τ as given by lemma
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1. In cyclical fashion, the algorithm is summarized as follows:

τ | β, σ2,Y ∼ π
(
τ | β, σ2,Y

)(
β, σ2

)
| τ ,Y ∼

×

 σ2 | τ ,Y ∼ Inverse-Gamma
[
(n− 1)/2, Ỹ

T
(
In −XA−1

τ XT
)
Ỹ /2

]
β | σ2, τ ,Y ∼ Np

(
A−1

τ XTỸ , σ2A−1
τ

)
,

3. Simulation studies

We study the computational efficiency between the 2 and 3BG samplers using simulation stud-
ies. All studies were performed on a Windows 11 Pro PC with 16.0 GB RAM, 8 cores and Intel
(R) Core(TM) i7-8650U @ 1.90GHz processor.

The data is simulated using the following model:

Y = Xβ∗ + ϵ, (6)

where ϵ ∈ Rn×1 is a vector of standard normal variables and β∗ ∈ Rp×1 is a vector of the
true regression coefficients. For the spike-and-slab model, we perform two sets of simulations at
n = {50, 100} while we do n = 75 for a single set of simulation for the Bayesian lasso model. We
set p such that p

n = {0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5}. Hence we use 2-block simulations with each
(n, p) combination giving 10 datasets each for the spike-and-slab, and 1-10 block simulation with
each (n, p) combination giving 10 datasets for the Bayesian models respectively. For each dataset,
the rows of the n× p design matrix, X are independently drawn, each from the p− dim standard
multivariate normal distribution after which the columns are standardized to have mean zero and
squared Euclidean norm n. For each p we experiment with, β∗ is such that its first p/5 elements
are nonzero, and are drawn independently from the t2 distribution.

For all studies, we run 6 Markov chains under a parallel computing architecture using the foreach
package in the R programming language. Each chain is allowed to run at 15,000 iterations after
which the first 10% are chopped-off as burn-in. For all chains in all simulation, we set β = 1p and
σ2
0 = 0 as initial values. The regularization parameter λ was set to λ = 1. For the spike-and-slab

model, we consistently set the hyperparameters of the priors w̃j = 1/2, κ = 100 and ζ = 1/100.
To assess computational efficiency, we estimate the average lag-1 autocorrelation, ρ1 of the σ2-
marginal of the chain under stationarity (post burn-in). The reason for using this metric as well
as the σ2 parameter rather than the β is discussed by Rajaratnam and Sparks (2015). Also, we
estimate the average effective sample size per second, Neff/T , where Neff , the effective sample size
(computed from the R package coda Plummer et al. (2006))is defined by:

Neff =
N

1 + 2
∑∞

k=1 ρk
. (7)

3.1. Results for the Spike-and-slab model

The left panel of Figure 1 shows the empirical average lag-one autocorrelation of the σ2 com-
ponent of the six MCMC chains for the spike-and-slab model at n = 50. It is indeed clear that the
new 2BG exhibits smaller average autocorrelations across all (n, p) combinations than the 3BG
counterpart. This implies that the 2BG has better mixing rate and hence is more efficient compu-
tationally than the 3BG algorithm. We can see that the gap widens even more as the dimension
of the covariates, p gets bigger and bigger relative to the sample size, n. The right panel shows the
average effective sample size per second, Neff/T , in the base-10 log scale of each sampler. It can be
observed that the 2BG produces many effective sample than the 3BG sampler and this becomes
even more as p grows relative to n, hence we pay smaller computational cost per chain for using
the 2BG sampler which makes it an ideal algorithm for high-dimesional problems. Similar story
can be told when we scale up the sample size n = 100 as depicted in 2.
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Figure 1. Empirical lag-one autocorrelation at n = 50 (left) and the average effective sample size
per second in base-10 log (right) of the σ2 component of the four MCMC chains for the spike-and-
slab model.

3.2. Results for the Bayesian lasso model

We make similar analysis as Section 3.1 under the Bayesian lasso model. The left panel of Figure
3 shows the empirical average lag-one autocorrelation of the σ2 component of the six MCMC chains
at n = 75. Similarly, we observe that the new 2BG exhibits smaller average autocorrelations across
all (n, p) combinations than the 3BG counterpart under both "n-small, p-large" and "n-large, p-
small" regimes. The closest average lag-one autocorrelation of the two algorithms happens when
n = p = 100. In terms of the average effective sample size per second, Neff/T shown on the
right panel, it is no surprise that the 2BG produces much more effective samples than the 3BG
counterpart, demonstrating its computational dominance over the latter.

4. Application to Real Data

We now apply both the Bayesian lasso and te spike-and-slab models to a real dataset. We
use the well-known NCI-60 cancer cell panel from the National cancer Institute. This dataset
comprises protein expressions for a specific protein selected as the response variable, and the
gene expressions of the 100 genes that have the highest (robustly estimated) correlations with the
response variable which are screened as candidate predictors. This pre-processing is done using
the R robustHD package (Alfons, 2021). Hence, we have n = 59 samples and p = 100 covariates.
Each covariate was further standardized to have mean zero and squared Euclidean norm n. We
set the hyperparameters of the priors w̃j = 1/2, κ = 100 and ζ = 1/200 with λ = 0.5. For both
shrinkage models, we run 18,000 chains and set the first 10% aside as burn-in.

As we can see from Figures 4 and 5, the chains for both the spike-and-slab and Bayesian lasso
models have attained stationarity and hence sufficient for estimating the posterior distribution.
Further, from Table 1, we can see that the lag-one autocorrelation for the 2BG model for both
the spike-and-slab and Bayesian lasso models (0.387 and 0.161 respectively) are much smaller
than the 3BG counterparts and hence mixes better. Moreover, we can see that the 2BG sampler
produces about twice as many effective samples than the 3BG sampler for the spike-and-slab model,
whereas it produces about five-times as many for the Bayesian lasso which is highly efficient and
computationally much cheaper.

5. Discussion

In this study, we have used both simulation study and real data analysis to demonstrate the
computational prowess of the two-block Gibbs sampler algorithm, specifically using the spike-and-
slab and Bayesian lasso models. The 2BG has proven to be a faster and more efficient algorithm

https://discover.nci.nih.gov/cellminer/
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Figure 2. Empirical lag-one autocorrelation at n = 100 (left) and the average effective sample
size per second in base-10 log (right) of the σ2 component of the four MCMC chains for the spike-
and-slab model

Autocorrelation Neff

Dataset n p 2GB 3GB 2BG 3BG
Gene (spike-and-slab) 59 100 0.387 0.774 3,263 1,639
Gene (Bayesian lasso) 59 100 0.161 0.700 10,921 2,856

Table 1. Lag-one autocorrelation and effective sample size per second for the σ2-component of
2BG and 3BG of the spike-and-slab and Bayesian Lasso models as applied to the protein gene
dataset

relative to the 3BG counterpart. This presents researchers and analysts edge to leverage the
Bayesian framework in high-dimensional data modeling, especially as it presents the possibility of
quantifying parameter uncertainties for inference via the Bayesian credible intervals while leaving
little to worry about computational costs and complexities.
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Figure 3. Empirical lag-one autocorrelation at n = 75 (left) and the average effective sample size
per second in base-10 log (right) of the σ2 component of the four MCMC chains for the Bayesian
lasso model

Figure 4. Trace-plot and density plot of the 2BG spike-and-slab model for the proteins data

Figure 5. Trace-plot and density plot of the 2BG Bayesian lasso model for the proteins data
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